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Abstract—A new non-C2-symmetrical antimony–phosphorous ligand, (±)-2-diphenyl-phosphano-2 0-di(p-tolyl)stibano-1,1 0-binaph-
thyl (BINAPSb) 3, has been prepared from 2-bromo-2 0-diphenylphosphano-1,1 0-naphthyl 4 via its borane complex 6, and could be
resolved by the separation of a mixture of the diastereomeric palladium complexes 8A and 8B derived from the reaction of (±)-3 with
optically active palladium reagent (S)-7. The enantiomerically pure BINAPSb 3 has proved to be highly effective in the palladium-
catalyzed asymmetric hydrosilylation of styrene as a chiral auxiliary.
� 2004 Elsevier Ltd. All rights reserved.
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Figure 1.
Catalytic asymmetric synthesis using transition metal
complexes with chiral 2,2 0-substituted-1,1 0-binaphthyl
ligands is a powerful and economically promising
method for the synthesis of enantiomerically enriched
compounds.1 Among them, the most useful chiral ligand
is phosphorus compounds such as 2,2 0-bis(diphenyl-
phosphano)-1,1 0-binaphthyl (BINAP) 1, which exhibit
high enantioselectivity in various types of asymmetric
reactions.1,2 Taking advantage of the marked efficiency
of the 1,1 0-binaphthyl core as a chiral inducer, a variety
of hetero-bidentate 1,1 0-binaphthyls bearing one phos-
phorous and one other heteroatom group such as nitro-
gen,3 arsenic,4 oxygen5 and sulfur6 on the 2,2 0-positions
of the 1,1 0-binaphthyl backbone have been developed
and employed successfully in a wide range of enantiose-
lective reactions, during the last two decades. Recently,
a versatile synthesis of optically active 2 0-substituted 2-
phosphano-1,1 0-binaphthyls containing group 14 (sili-
con, tin) and 17 (iodine) elements was attained, although
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these were derived from optically active BINAP.7 In the
course of our current studies on organoantimony com-
pounds, we are interested in the synthesis and utilization
of optically active organoantimony compounds for
asymmetric reaction as a chiral auxiliary.8 As a part of
our research, we have recently reported the synthesis
of an enantiomerically pure C2-symmetrical antimony–
antimony ligand, 2,2 0-bis(diarylstibano)-1,1 0-binaphthyl
(BINASb) 2, and its efficiency for palladium-catal-
yzed asymmetric allylic alkylation of racemic 1,3-di-
phenyl-2-propen-1-yl acetate as a chiral inducer.9

We present here the synthesis and resolution of a new
non-C2-symmetrical antimony–phosphorous ligand,
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Scheme 1. Reagents and conditions: (i) BH3–THF, THF, 0 �C, 1h, 98%; (ii) n-butyllithium, THF, �80�C, 1h; (iii) (p-Tol)2SbBr, THF, �80�C to

0 �C, 2h, 58%; (iv) diethylamine, THF, 40 �C, 1h, 91%; (v) dichloromethane, room temperature, 30min, 94%; (vi) triphenylphosphine,

dichloromethane, room temperature, 30min, 85–91%.
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Figure 2. Molecular structure of (S)-(–)-3. Selected bond distances (Å)

and angles (�): C(1)–C(10) 1.500(8), C(2)–P 1.841(6), C(2 0)–Sb 2.148(6),

C(2)–C(1)–C(10)–C(2 0) 69.9(8), C(8a)–C(1)–C(1 0)–C(8a 0) 72.3(7).
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2-diphenylphosphano-2 0-di(p-tolyl)-stibano-1,1 0-binaph-
thyl (BINAPSb) 3, as well as its usefulness for palla-
dium-catalyzed asymmetric hydrosilylation of styrene
as a chiral auxiliary.

First, introduction of a di(p-tolyl)antimony group at
the 2 0-position on the 2-diphenylphosphano-1,1 0-
binaphthyl core was performed by a straightforward
procedure including lithiation of 2-bromo-2 0-diphenyl-
phosphano-1,1 0-binaphthyl 410 with n-butyllithium and
subsequent trapping with bromodi(p-tolyl)stibane [(p-
Tol)2SbBr] at low temperature (�80 �C). However, this
direct metal insertion reaction on 4 produced the
expected BINAPSb 3 in low yield (<8%), probably due
to the instability of the lithio intermediate and/or
carbon–phosphorus bond cleavage with n-butyllithium.
This result led us to attempt a modern metallation path-
way including a phosphorous-borane complex devel-
oped by Hayashi and co-workers.7 The borane
complex 5 was readily prepared from 4 by treatment
with borane in THF.11 The transformation of 5 into BI-
NAPSb-borane complex 6 could be achieved by lithi-
ation with n-butyllithium at �80 �C followed by
reaction with (p-Tol)2SbBr in 58% yield, presumably
via a stable 2 0-lithio binaphthyl intermediate. The bor-
ane complex 6 underwent ligand exchange reaction
upon treatment with diethylamine to yield (±)-BI-
NAPSb 3 in 90% yield. According to this procedure,
(±)-3 was obtained in more than 50% overall yield from
4 (Scheme 1).

Next, we attempted the resolution of (±)-3 via their dia-
stereomeric complexes using optically active palladium
reagent, di-l-chlorobis[(S)-dimethyl(1-ethyl-a-naphth-
yl)aminato-C2,N]dipalladium(II) (S)-7, which have been
reported to be a useful resolving agent for antimony
compounds.8a,b,d The reaction of (±)-3 with (S)-7
afforded an equimolar amount of a diastereomeric
mixture of 8A and 8B, which could be separated by silica
gel column chromatography by use of a mixture of ethyl
acetate/dichloromethane/ethanol (8:4:1) as an eluent.
Thus, the palladium complexes (–)-8A and (+)-8B were
obtained in 84% and 99% yields, respectively. The struc-
tures of 8A and 8B were elucidated mainly by their
MS(FAB), NMR spectral and elemental analyses. The
palladium complexes 8A and 8B are presumed to be a
cationic salt structure by the following evidence. The
Rf values on TLC (AcOEt/CH2Cl2/EtOH = 8:4:1) for
8A (0.49) and 8B (0.17) are similar to those for BI-
NAP-(S)-7 complexes [0.10 for (+)-BINAP-(S)-7 and
0.09 for (–)-BINAP-(S)-7], and are largely different from
those of BINASb-(S)-7 complexes [0.95 for (+)-BIN-
ASb-(S)-7 and 0.91 for (–)-BINASb-(S)-7] which have
been known to be a nonsalt structure. Diastereomeric
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purity of 8A and 8B was determined by the 31P NMR
spectra in that each 31P signal appeared at 47.8ppm
for 8A and 46.3ppm for 8B. Treatment of 8A and 8B
with triphenylphosphine brought about ligand exchange
reaction to afford optically pure (+)-3 and (–)-3, respec-
tively, in excellent yields.12 Single-crystal X-ray analysis
of (–)-3 revealed that (–)-3 is S-configuration (Fig. 1),13

and the dihedral angle of the two naphthalene rings
[C(8a)–C(1)–C(1 0)–C(8a 0) = 72.3�] is smaller than that
of (R)-BINASb (90�) (Fig. 2).8b

We examined the ability of optically active BINAPSb 3
as a ligand in palladium-catalyzed asymmetric allylic
alkylation14 and asymmetric hydrosilylation.15 The reac-
tion of (±)-1,3-diphenyl-2-propen-1-yl acetate with
dimethyl malonate by use of BSA, [Pd(C3H5)Cl]2, (R)-
BINAPSb 3A and AcOK (acetate:malonate:BSA:Pd
cat.:ligand:AcOK = 1:3:3:0.02:0.04:0.02) in dichloro-
methane over 24h at room temperature afforded (S)-
dimethyl(1,3-diphenylprop-2-en-1-yl)malonate in 30%
yield with 45% ee. The result shows that the reaction
rate and enantioselectivity with BINAPSb 3 were both
lower compared to those with BINASb 2 (68%, 81%
ee) (Scheme 2).9

The asymmetric hydrosilylation of styrene15 with tricho-
rosilane was carried out at 0 �C without a solvent in the
presence of 0.2mol% of the palladium catalyst generated
in situ by mixing [Pd(C3H5)Cl]2 with 2equiv (to Pd)
of the (R)-BINAPSb 3A: (styrene:trichorosilane:[Pd-
(C3H5)Cl]2:ligand = 1000:1200:1:2). The hydrosilylation
product, 1-trichlorosilyl-1-phenyl-ethane 10, initially
formed was oxidized to optically active 1-phenylethanol
11 by hydrogen peroxide in the presence of potassium
fluoride.16 Thus, (R)-11 was obtained in good yield
(78% yield) with high enantioselectivity (95% ee), when
the reaction was carried out at 0 �C for 10h with (R)-BI-
NAPSb 3.17 Neither noticeable catalytic activity nor
perceptible enantioselectivity was observed when (R)-
BINASb 2 was employed instead of (R)-BINAPSb 3A
in the present reaction (0 �C, 24h, 10% yield, 12% ee).
These results suggest that BINAPSb 3 has similar ability
to H-MOP and was proved to be a more powerful ligand
than other 2 0-heteroatom substituted 2-phosphano-1,1 0-
binaphthyls.6b,15

Consequently, we have accomplished the synthesis of
optically active 2 0-antimony substituted 2-phosphano-
1,1 0-binaphthyl derivative BINAPSb, and demonstrated
that this non-C2-symmetrical antimony–phosphorous
binaphthyl system should be useful for the enantioselec-
tive hydrosilylation of styrene with trichorosilane.
Details of this reaction as well as further application
of the optically active BINAPSb to other asymmetric
reactions are now in progress.
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